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DETERMINATION OF THE RELAXATION TIME 
HEAT FLUX 

I. B. Krasnyuk and T. T. Riskiev 

OF A 

UDC 536.24.02 

A method for determining the relaxation time of a heat flux is suggested for some nonlinear boundary-value 

problems of heat transfer. Modern representations of the applied theory of dynamical systems are employed. 

Recent ly  considerable at tent ion has been focussed on the modified heat  conduction equation of the 

hyperbolic type [1 ]: 

OT tr 02T 02T 
+ 3 - - = 0  

Ot pc 0 0 x  2 Ot 2 ' 

(o) 

where ~ is the relaxation time of the heat flux, which is comparable with the time of mean free path of the particles. 

Equation (0) may be derived from the classical equation 

OT - div Q (1) 
p c o  o-7 = 

and the empirical relation 

Q It+~ = - tc grad T ,  (2) 

where z is the "delay" time of the response of the heat flux to a change in the temperature gradient (1). 

Thus,  in the zero approximation we obtain the equation 

O(2 -~- + Q = - x grad T (3) 

and then equality (0) follows from (1)-(3). 

Here, it is assumed (explicitly or implicitly) that ~ > 0 and << 1, "forgetting" that expansion in a Taylor 

series yields the possibility of approximating a sufficiently smooth function by polynomials. Actually, 

0(2 (2(.,  t + ~ ) - ( 2 ( . ,  t ) = ~ - ~ - ( . ,  t) +. . .  

n OnQ 
. . . +  . . . . .  ( . ,  t ) + -  

n ! Ot n 

n + l  
T 

(n + 1) ! 

on+lQ 

otn+ 1 (" , c) (t < c <  t + z ) .  

Let us assume that grad T = 0 in (3), and then 

(4) 

= Q0 exp (2 0 (2 = - z - l )  , 

where Q represents a relaxation mode and T is in fact the relaxation time. However, what will ~ be called if two 

terms are left in expansion (4)? Since equality (3) is the zero approximation of equality (1) - the Fourier 
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hypothesis ,  which is fulfilled very well in some experiments - we make the following assumptions without 

complicating the problem: 

1) zero approximation (3) is valid; 

2) for all n >_ 2 the functions I Oi t+lQ/dt  It+l I are uniformly bounded by the common constant M > 0. 

We now show that condition 1) is unnecessary,  i.e., 1) follows from 2). In fact, from condition 2) it follows 

that for any e > 0 z > 0 may be found such that the following estimates are obtained: 

It 
T r n / _ _  _ = ,  _ . n ! M < n  ' ~ = M ' n  1) r (n>2)_  

and, consequently, 

0ItQ T It 

_ O t  n r t [  n 

i.e., the zero approximation is valid with an accuracy to e > O. 

The last estimate may be improved by assuming that 

0 It_O_O _ Mit. 

Ot n 

Usually under  local equilibrium conditions M n  -" 0 as n --, oo and already the second derivative with respect to time 

must be sufficiently small, i.e., at ~- = e l M 2 .  Then 

t 0(2 Qo T exp - M 2 Q = Qo exp - e M2 ' Ot = - e ' 

--02T - Qo ~ exp  - - t M e  2 
Ot 2 

and it is easy to see that at e --, 0 the function 102T/Ot21 is actually small; however, tending to zero proceeds slowly: 

the factor T in Eq. (0) must improve this convergence. 

1. Formulat ion of the Boundary-Value Problem. Reduction to a System of Difference Equations. We 

consider system of heat t ransfer  equations (1)-(3) and formulate the following boundary  conditions to solve it: 

Q = O i x = O ,  Q = f ( T ) l x =  ~ (5) 

and some initial conditions. The  linear transformation 

1 z 
Q = "2 (Ul + " 2 ) :  T = ~ (t,t I - U2) , 

where z is some number,  may reduce this problem to the form 

oUl 0Ul (1 ') - - + - -  = _ ~  (ul + u2) ,  

Ou 2 Ou 2 
= - - f l  (U 1 + U 2 ) ,  

os 

with the boundary  conditions 

( s , 7 ) ~ / 7 =  [0 ,  I ] •  + 
, 
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Fig. 1. Limiting temperature distribution at large times. 

�9 5' u 1 = -  U21s= 0 and ( -  u2) = f ( u l ) l s =  1, 

here 7 is a function prescribed implicitly by the relation 

-2 

and some initial conditions: this reduction is discussed in detail in [2 ]. 

Here 

/~=-~  ~ , 
2 z" X 

Z - -  S " .~ - - -  
x p c  0 ' e 

[e) 1 
t =  7,  oJ = - 5 .  

Z 

We shall investigate the asymptotic behavior (7 -- ~)  of the solutions of this problem at extreme values of 

the parameter g ~3 -1. At # --, 0 the boundary-value problem is investigated in [2 ], where it is shown that it is 

characterized by asymptotically periodic piecewise-continuous solutions that are close to piecewise-constant ones 

at g = 0 (Fig. 1) and take values from the set P+, where 

P + = { ~ : 7 ( ~ ) :  17(~)[ < 1} 

is the set of attracting fixed points of the mapping 7 [2 ]. 

Its turns out that  at/~ ~ oo the situation, generally speaking, changes; however, the properties of asymptotic 

periodicity of the solutions are preserved in a certain sense. To illustrate this, we use the example described in 

detail for the Dirichlet problem in [3, p. 153 ]. For the system under consideration the proof, on the whole, is 

analogous. 

We shall consider the system 

(u t + u x ) = v ,  ~(v t - v x ) = - v .  

It is known [3] that  by integrat ing each of these equations along the characteristics ~c t = 1 a n d  ~c t = - 1 ,  

respectively, at sufficiently small e > 0 the solutions may be represented in the form 

u = ~'1 (x - t) - ~o 2 (x + t) exp ( -  t / e )  + ~o 2 (x  - t ) ,  

v=~o  2 ( x +  t) e x p ( -  t / e ) ,  u = u ( x ,  t ) ,  v =  v ( x ,  t ) ,  

where ~i are functions determined from the initial functions at t = 0, i -- 1, 2. 
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We now determine the functions u and v proceeding from their values (perhaps unknown) at x -- 0: 

u ( x ,  t) = ~'1 ( t -  x) + ~0 2 (t + x) - ~2 (t + x) exp ( -  x/2e), 

V (X,  t) = ~0 2 (l  + X) exp ( -  x/2e), 

where ~01 and g'2 are determined from the values of u and v at the boundary x = 0. 

Substituting these solutions into boundary conditions (2), we may obtain the following functional relations 

(t) + (t) = 0 ,  

- u (t + 1) exp ( -  1/2e)  =~(~o 1 (t - 1)) + 

+ ~P2 (t + 1) - ~P2 (t + 1) exp ( -  1 / 2 e ) ,  

from which after  shifting the argument by unity in the first equation we obtain 

/P2 (t  + 1) = qb A (~2  (t  -- 1 ) ) .  

Assume that this equation is resolvable in such a manner  that 

-1/~) 
~0 2 (t + 1) = ~ A  (W2 (t - 1)) ( A  = e , 

where qb A is some (perhaps multiple-valued) function. 

The  asymptotic behavior of the solutions of this equation is known [2 ], and these solutions may be 

constructed by successive iterations of the  initial function prescribed on the interval [ - 1 ,  1). 

Thus,  the solutions are the asymptotically periodic piecewise-constant functions that take values from the 

set of attracting fixed points of the mapping qb A. 

Now from the above representation for the solutions, by virtue of the constancy of the functions u and v 

on the characteristics ~ = T - X and r/ = T + X, the following limiting behavior of the solutions along the char- 

acteristics may be readily obtained; 

+ 
u l ~ - PA exp (-- x/2e), 

7--,00 

+ 
v l ~ + PA exp (-- x/2e). 

Unlike the case of small/~ > 0, the solutions decrease exponentially with respect to the space variable; however, 

the asymptotic periodicity relative to the time variable is preserved: the same occurs for the system to which the 

heat t ransfer  equations are reduced. 
Thus,  if 2 = ~:-1 is interpreted as the parameter  of a spectral transient mode, then the two limiting cases 

2 = 0 and 2 -~ ~ coincide qualitatively from the viewpoint of the asymptotical behavior in time. What may occur 

at the intermediate values 0 < 2 < +oo is, generally speaking, unknown. However, extension to these values 2 ~  

R + may be achieved in the context of the "abstract" theory of dynamical systems [4 ]. 
2. Dynamical  Approach.  In order  to understand the nature of the problem, it is sufficiently to s tudy the 

difference equation with continuous time 

U 1 ( t  "1- 1) = f ( u  1 ( t -  1 ) ) ,  

to which the heat t ransfer  equations with nonlinear boundary conditions are ultimately reduced. Indeed, let the 

mapping f have the form depicted in Fig. 2. Here a, b E P+, c E P - ,  where P -  is the repulsive fixed point of the 

mapping [4 ]. Let 21 = f(a), 22 = f(b), ) l -  = f(c), where 21, 22, 2 t -~  R +. 
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Fig. 2. "Boundary" condition determining relaxation-type fluctuations. 

As is known [4 ], 2t and72 characterize the rates of convergence the trajectories of solutions of the difference 

equation (and, consequently,  of the heat t ransfer  equation) to the equilibrium (limiting) solution while 2 -  indicates 

the rate of divergence of the trajectories. It is also known that this tendency follows a power or exponential  law 

[2 ], and for a hyperbolic system the convergence is principally the same for t (at a fixed x) and x (at a fixed t). 

Then  from relation (1) we obtain 

-2 t  -2x 
Qo e _- tcToe , 

Qo e-2(t+x) 
- -  ---- 0 

-- Ir TO t~oo 

and therefore 2 = Z --1, where v is the relaxation time of the heat flux. Thus,  we have related the definition of the 

time r to the topological characteristics of the mapping f. 

It is natural  to choose from the two quantities 21 and 22 the smaller one: then 2 = min (21, 72), and 

consequently,  ~ = max( r l ,  ~2). Analogously,  we may determine the increment of local instability. It is also 

noteworthy that T > 1 for the stable mode and 0 < T < 1 for the unstable one. In the equilibrium case (see Fig. 1) 

it may be assumed that T --, oo on the "shelves" and r ~ 0 at the points of discontinuity of the solution: this means 

that at such points the solution relaxes "instantaneously" from one equilibrium position to another.  

When the mapping f is ergodic, almost all the trajectories are locally unstable, and their behavior is char- 

acterized by the instability increment 

N 
h0 = Z In 12i-I. 

i > k  

If the mapping f addit ionally possesses the intermixing property ([4 ], p. 103), then we have an example of K- 

systems to which a number  of problems of physics are reduced [4 ]. 

Following [4 ], we consider the metric invariant h of the dynamical system f. It is known that 

-1  
h - h 0 -Vc , 

where h is the entropy and ~:c is the time of splitting of correlations, and, consequently, 

ho = ~c = In 2 
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We have dwelt on such an approach because it finds application not only in heat transfer problems but also, 

for instance, in laser physics [5], where, in particular, the modified Fokker -P lanck  equation (FPE) may be 

obtained for the probability density of spontaneous radiation of photons, which coincides in form with heat transfer 

equation (0) and follows from the hypothesis 

W[ t+,c = - g grad P ,  

where P is the probability density and W is the probablity flux. The modified FPE also agrees well with the 

well-known Yaglom-Monin  equation [6 ], which is obtained with account for the finite velocity of heat propagation 

by quite different methods. 

As concerns laser physics, the methods used to determine ~c in this field of research may be extended, 

almost without modification, to heat transfer problems. For instance, in laser theory the Fourier transforms of 

correlation functions often have a Lorentz form: 

1 z" c 

R - 2 2 ,  
l + ~ r  c 

where the  function R decreases rapidly for co > o9 c and co c = r~- 1 and the quantity Wc determines the spectrum 

width of the system. 
3. "Probabili ty" Determination of the Relaxation Time. We now consider a somewhat different approach 

to the determination of the relaxation time. The following formula is well-known [7 ]: 

- 1  
7; = E Pv, v' ,  

V 

where Pv,v' is the probability density of particle with the wave vector k after an interaction event (e.g., creation- 

annihilation of a photon) into a particle with the wave vector k'. In particular, for v --, v' we set that Pv, v' = n - l ,  

and then 

1 1 
- = n - - - - -  1 ( v =  1). 
T n 

This relation "clarifies" to some extent the estimate, obtained above, for the relaxation time: z -_- 1. 

We consider the Gibbs distribution over velocities for the density P [8 ]: 

= I P i l  2 P (Pl ,  " " ,  PN) gP ( V ,  N ,  T) exp 2T .= 

where 

(I) (V, N ,  T) = f l d P l . . ,  dPN = V N ,  

here V is the phase volume occupied by N particles in velocity space. Now we identify Pv,v' with the density P(Pl ,  

. . . .  PN) as follows. We set 

Pl = " "  = P N =  Pcp 

and 

NPvcpVcp = P (mVcp , . . .  , mVcp) . 
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Such an approximation is rough; however, it is rather  realistic in the equilibrium case since combinatorial 

considerations may be neglected. We could introduce some combined density 

P (v, v') = f P (Pl . . . .  , PN) d P 3 . "  dPN, 

as is done in [8, p. 253 ]; however, this in no way influences the results formulated below. Consequently: 

l=NPv,v'- 1 exp{- N-~- 2 } 
V~c p 2T vcp " 

By definition we set T = kB~p /3 ,  where kB is the Stefan-Bol tzmann constant, and then 

 (3N) T o = % . e x p  m ~  . (6) 

This equality agrees with the above determinate representations of the fact that z ~ +o in the equilibrium case. 

Formula (6) may be used in investigating cooperative effects (e.g., in the appearance of superradiation [9 ]), when 

the number of particles participating in the interaction must be taken into account. 

One of the reasons for introducing the parameter z is motivated, apparently, also by a desire (explicit or 

implicit) to take into account the local interaction of different kinds of particles because it is difficult to take into 

account the interaction potentials, which are often unknown. According to the Gibbs model, 

P (Xl, " " ,  XN, Pl . . . . .  PN) = gp (V ,  N ,  T) exp - 

• exp - T U ( x  1 . . . . .  XN) 

and repeating of the previous calculations we obtain 

N 

E Ipil 2 
i=1 

• 

+0 +t  = --~ exp ~v , 
g 

w h e r e  U ( X  1 . . . . .  XN) = E U (x i - xj) is the potential energy. Here in the case of a model of pairwise interaction of 
i;~" 

solid spheres it may be a~sumed that  e = d/2 ,  where d is a sphere radius, but then [8 ]: 

~, e<d, 
U ( e ) =  0 , e > _ d ,  

and the minimum relaxation time is 

T 0 

For the Ising model ([8 ], p. 241), we obtain 

+0 (a) T = F e x p  "~ , 
(7) 

where U(e) = a for e = d, i.e., in the case where two neighboring particles interact. Equality (7) shows that the 
relaxation time is proportional to the interaction "force." 

4. Systems with Random Potentials. We consider the situation where, following [8 ], the energy of the 
system is random. Let, for instance, 
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dH ( x ,  t) = ~tdW ( x ,  t) , 

where 2 is some parameter;  W (. ,  t) is a Wiener process; x E R 1 is the particle coordinate. Then  the generalized 

force in the direction of the parameter  A is equal to [8 ] 

F (x t ,  )0 = O H ( x ,  t ,  2) W (x t ,  ;t) 

where W(.,  t ,-)  is a Gaussian process. 

We investigate only systems whose potential energy changes with time in accordance with the law 

dH t = 2 d W  t 

and is uniformly distributed with respect to the space variable. Then the probability density of the random process 

H t satisfies the F okke r -P l anck  equation 

where D is the diffusion coefficient. 

OP 02p 
- D -  

O t  OH 2 ' 

Note that for ergodic systems the coefficient D for FPE, expressed in terms of angle-action variables ( [4 ], 

p. 159), is determined by some averaging at first with neglect of phase correlations: 

1 D = ~ (( At 2 ) ) ,  

and then with account for them. Here z c << T is the characteristic time of change in H in K-systems (in [4, p. 160 ] 

T is considered instead of H).  In [4 ] it is proved that 

where the function 

is introduced such that 

- -  m - rrtQ , 
m=0 Zc ' 

, co , - -  2 2 

oJ + I / T  

) , o~ = a ( o ~ ) ,  
1/r c--,O 

where 6 is the delta-function and k is a coefficient ([4 ], p. 165). The term (co-rnff2) is of no significance for us 

and is determined by the specific properties of the problem for a pendulum considered in [4 ]. 

For our purposes the dependence D = D(~o c) is of importance, which shows that the averaged diffusion 

coefficient depends on the correlation time. Thus, we shall introduce the correlation time for the random process 

Ht, but then the white-noise approximation cannot be used for the trajectory Ht: 

(( ~ t + ~ , / - I t  ) )  = ~ a  ( ~ ) ,  ,~ ~ n  + , 

and, as a consequence, the Fokke r -P l anck  equation is not valid. 

For the same reason, we adopt the hypothesis 
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OP 
- D  WI t+~c OH ' 

where W is the probability flux, and we write the law of conservation of probability 

OP 
- div W. 

Ot 

From these equations at Tc = 0 we obtain the FPE, while at r c > 0 by expanding W in a Taylor series, in the zero 

approximaton we arrive at the system 

OW OP 
"rc--~-+ W =  - D OH , 

OP OW 
o-7 + Tf f=  o, 

tu which the Yaglom-Monin equations follow. 

To solve this system, we formulate the following boundary conditions: 

w=01n= 0, w=Y(e)tn= 1 

and some initial conditions and call such a combined problem problem S. Here f is an arbitrary nonlinear function. 

The hypothetical boundary condition reflects an event of some nonlinear interaction that "occurs" only when the 

random energy of the system attains its "maximum" value. We shall consider that this condition is of an academic 

character. 

Similarly to the heat transfer problem it may be shown that there is a parameter 

such that at g = 0 problem S has asymptotically periodic piecewise-constant solutions and at 0 < g << 1 it has 

solutions that are close to them and take the values from P+, where P+ is the set of attracting fixed points of f. 

Example.  Let us extend the equality obtained for determining the relaxation time to "quasi-equilibrium" 

solutions obtained in problem S. Then 

r t = - ~ e x p  -~- , 

Er~ = ~ E e x p  - d N f0 exp H d H =  

r 0 D+ H r 0 ~+ H 
exp exp dH 

Cl H 1 

= ~ P l  T exp - 1  + 

f ( -t- 0 Hmax + 
+ T ~ exp | exp 
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Apparently, the last formula could be used to determine the temperature in a crystal lattice with an 

interaction potential that is random in time and uniform in space. If with an account for the equations themselves 

we write the boundary condition at H = 1 in the form 

OP 
- D ~ - f f  = ? ( e ) ,  

then for a quantum solid the probability P may be considered to be proportional to the square of the amplitude of 

the energy of elementary excitations in the lattice and OP/OH may be interpreted as the amplitude shift relative 

to the energies in the vicinity of lattice oscillations. 

N O T A T I O N  

T, temperature; Q, heat flux; 3, relaxation time of a heat flux; k, thermal conductivity; p, density; Cv, 

specific heat; kB, Stefan-Boltzmann constant. 
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